
Week 6 Description
8.2 Area of Surface of Revolution
Appendix G and Spivak: The log and exponentiation

If f is positive and has a continuous derivative, the surface area of the surface obtained by
rotating the curve y = f(x) for a ≤ x ≤ b about the x -axis is

S =

∫ b

a

2πf(x)

√
1 + [f ′(x)]2dx

Note that if you put ds =
√

1 + [f ′(x)]2dx you can write the formula in the abbreviated

form

S =

∫
2πyds

or if about the y -axis

S =

∫
2πxds

Like the problems with arc length, we don’t care if the integrals look impossible, we can go
ahead and use wolfram to get a numeric answer.

1. Find the surface area of y = sin(x) for 0 ≤ x ≤ π rotated about the x axis.

Since sin′(x) = cos(x) we get∫ π

0

2π sin(x)
√

1 + cos2(x)dx

This integral can be done using the substitution u = cos(x) then u = tan(θ) a big
mess, but it is easy with wolfram You even get a nice picture.

2. Find the surface area of y = sin(x) for 0 ≤ x ≤ π rotated about the y axis.

Note that we are not going to solve for x, and also that since we have y as a function
of x we are still going to use ds =

√
1 + cos2(x)dx, no dy involved. The only thing

that changes is that instead of∫ π

0

2π sin(x)
√

1 + cos2(x)dx

we use ∫ π

0

2πx
√

1 + cos2(x)dx
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https://www.wolframalpha.com/input/?i=rotate+y+%3D+sin%28x%29+with+0%3Cx%3Cpi+around+the+x-axis


3. Rotate y = log(1 + x), 0 ≤ x ≤ 1 about the y axis. Since it is about the y axis we
would use

S =

∫
2πxds

In this example f ′(x)2 =
1

(x+ 1)2
and the integral is

2π

∫ 1

0

x

√
1 +

1

(x+ 1)2
dx ≈ 3.695

wolfram

4. Rotate x = y + y3 + y4, 0 ≤ y ≤ 1 about the x axis.

Here we have x as a function of y (you cannot solve for y) so use ds =

√
1 +

(
dx
dy

)2
dy

and solve

2π

∫ 1

0

y

√
1 + (1 + 3y2 + 4y3)2dy

wolfram
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https://www.wolframalpha.com/input/?i=rotate+y+%3D+log%281%2Bx%29++with+0+%3Cx%3C1+around+the+y-axis
https://www.wolframalpha.com/input/?i=rotates+x%3Dy%2By%5E3%2By%5E4+for+0%3Cy%3C1+about+the+x+axis


Appendix G, and especially the material taken from Micheal Spivak Calculus is going to
change the way we look at logs and exponents. Instead of defining the log as the inverse of
an exponential we are going to use the definition

log(x) :=

∫ x

1

1

t
dt, x > 0

The shaded region shown below would represent log(4)

Working from the definition of the log as in integral we will derive all the familiar properties
of the log that you already know

log(xy) = log(x)+log(y), log

(
x

y

)
= log(x)−log(y), log(x) < 0 if 0 < x < 1, lim

x→∞
log(x) =∞

And so on. We also see instantly that

log(1) =

∫ 1

1

dt

t
= 0

After that, the exponential function ex = exp(x) will be defined as the inverse of the log.
Then, for example, we will know that e0 = 1 because log(1) = 0 and not because “it is a
rule”
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The next step will be to define any exponential

bx := ex log(b)

For example

1. 2π = eπ log(2)

2. 4−1 = e−1 log(4)

3. sin(x)x = ex log(sin(x))

The first one gives meaning to raising a number to an irrational number.

The second show that 4−1 =
1

4
since

4−1 = e− log(4) = elog(
1
4) =

1

4

You should supply the reasons for each equal sign.
The last allows you to compute

lim
x→0

sin(x)x = lim
x→0

ex log(sin(x))

by using L’Hôpital’s rule to find limx→0 x log(sin(x)) = 0 and concluding that the limit is
e0 = 1
We also easily get the all important change of base formula that says the log of any base can
be written in terms of the log defined as an integral.

x = blogb(x) = elogb(x) log(b)

the first equal sign by definition of logb and the second by the definition of the exponent.
Taking the log of both sides gives

log(x) = logb(x) log(b) ⇐⇒ logb(x) =
log(x)

log(b)

One immediate consequence of the change of base formula is we can solve bx = A for x via

bx = A ⇐⇒ x =
log(A)

log(b)

A second consequence is

d

dx
[logb(x)] =

d

dx

[
log(x)

log(b)

]
=

1

x log(b)
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