Week 6 Description
8.2 Area of Surface of Revolution
Appendix G and Spivak: The log and exponentiation

If f is positive and has a continuous derivative, the surface area of the surface obtained by
rotating the curve y = f(x) for a <z < b about the x -axis is

5 = / 2 fa)y/1+ [ (@)

Note that if you put ds = /1 + [f'(x)]*dz you can write the formula in the abbreviated

form
S = / 2myds

S = / 2w xds

Like the problems with arc length, we don’t care if the integrals look impossible, we can go
ahead and use wolfram to get a numeric answer.

or if about the y -axis

1. Find the surface area of y = sin(x) for 0 < x < 7 rotated about the z axis.

Since sin’(x) = cos(z) we get

/07r 27 sin(x)+/1 4 cos?(x)dx

This integral can be done using the substitution u = cos(x) then u = tan(f) a big
mess, but it is easy with wolfram You even get a nice picture.

2. Find the surface area of y = sin(z) for 0 < z < 7 rotated about the y axis.

Note that we are not going to solve for z, and also that since we have y as a function
of x we are still going to use ds = /1 + cos?(z)dz, no dy involved. The only thing
that changes is that instead of

/27rsm )V 1+ cos?(x)dx
0

we use

/ 2xr/ 1+ cos?(x)dx

0


https://www.wolframalpha.com/input/?i=rotate+y+%3D+sin%28x%29+with+0%3Cx%3Cpi+around+the+x-axis

3. Rotate y = log(1 + x),0 < x < 1 about the y axis. Since it is about the y axis we

would use
S = / 2rxds

5 and the integral is

In this example f'(z)* =

(z +

27r/ m”1+ dx 3.695

4. Rotate z =y + > + y*, 0 <y < 1 about the x axis.

wolfram

2
Here we have x as a function of y (you cannot solve for y) so use ds = /1 + <d—‘”> dy

dy
and solve
1
7r/ y\/l + (14 312 + 43)%dy
0

wolfram


https://www.wolframalpha.com/input/?i=rotate+y+%3D+log%281%2Bx%29++with+0+%3Cx%3C1+around+the+y-axis
https://www.wolframalpha.com/input/?i=rotates+x%3Dy%2By%5E3%2By%5E4+for+0%3Cy%3C1+about+the+x+axis

Appendix G, and especially the material taken from Micheal Spivak Calculus is going to
change the way we look at logs and exponents. Instead of defining the log as the inverse of
an exponential we are going to use the definition

1
log(z) ::/ Edt,az >0
1

The shaded region shown below would represent log(4)
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N
Working from the definition of the log as in integral we will derive all the familiar properties
of the log that you already know

log(zy) = log(x)+log(y), log (g) = log(z)—log(y),log(z) < 0if 0 < x < 1, lim log(x) = o0

T—00
And so on. We also see instantly that

bat
ot

log(1) = 0

After that, the exponential function e® = exp(x) will be defined as the inverse of the log.
Then, for example, we will know that ¢’ = 1 because log(1) = 0 and not because “it is a
rule”



The next step will be to define any exponential

pE = log(b)

For example
1. 97 = ¢™ log(2)
92 471 — efllog(ll)
3. sin(ac)x — ezlog(sin(m))

The first one gives meaning to raising a number to an irrational number.

The second show that 47! = 1 since

4_1 _— e_IOg(4) = elog(i) = 1

You should supply the reasons for each equal sign.
The last allows you to compute

lim sin(z)® = lim e®'8(n(®)

z—0 z—0
by using L’Hopital’s rule to find lim, .oz log(sin(x)) = 0 and concluding that the limit is
e =1
We also easily get the all important change of base formula that says the log of any base can
be written in terms of the log defined as an integral.

- blogb(a:) _ 6log,](ac) log(b)

the first equal sign by definition of log, and the second by the definition of the exponent.
Taking the log of both sides gives

~—

_ log(x
log(b)

One immediate consequence of the change of base formula is we can solve b* = A for x via

log(x) = logy(x) log(b) <= log,(x)

log(A)
log(b)

V' =A << z=

A second consequence is




