

Two simple example of a u-substitution:

1.

$$\int \sqrt{\sin(x)} \cos(x) dx$$

The substitution is  $u = \sin(x)$ ,  $du = \cos(x)dx$  giving

$$\int \sqrt{u} du = \frac{2}{3} u^{\frac{3}{2}} = \frac{2}{3} \sqrt{\sin(x)^3} + C$$

2.

$$\int \sin(\pi x) dx$$

the mental substitution is  $u = \pi x$ ,  $du = \pi dx \iff \frac{du}{\pi} = dx$  giving

$$\frac{1}{\pi} \int \sin(u) du = -\frac{1}{\pi} \cos(u) = -\frac{1}{\pi} \cos(\pi x) + C$$

Examples of substitution  $u = g(x)$  where  $g'(x)$  does not appear in the integrand. The idea is to make  $u = g(x)$  and so long as  $g$  is one to one we can solve for  $x$

$$u = g(x) \iff x = g^{-1}(u)$$

And

$$dx = (g^{-1})'(u) du$$

Apply to the integral  $\int f(g(x))dx$  gives

$$\int f(g(x)) dx = \int f(u) (g^{-1})'(u) du$$

On the other hand, if we apply the straightforward substitution

$$\begin{aligned} u &= g(x) \\ du &= g'(x) dx \end{aligned}$$

to the same integral,

$$\int f(g(x)) dx = \int f(g(x)) \cdot \frac{1}{g'(x)} \cdot g'(x) dx$$

we obtain

$$\int f(u) \cdot \frac{1}{g'(g^{-1}(u))} du$$

The integrals (1) and (2) are identical, since  $(g^{-1})'(u) = 1/g'(g^{-1}(u))$  (why?)

1.

$$\int e^{\sqrt{x}} dx$$

Here we take

$$\begin{aligned} u &= \sqrt{x} \iff x = u^2 \\ dx &= 2udu \end{aligned}$$

giving

$$2 \int ue^u du$$

This requires integration by parts, stay tuned.

2.

$$\int_0^9 \sqrt{4 - \sqrt{x}} dx$$

The substitution is  $u = 4 - \sqrt{x}$  and now change the limit of integration so we don't have to substitute back  $u(0) = 4 - \sqrt{0} = 4$ ,  $u(9) = 4 - \sqrt{9} = 1$  Solve  $u = 4 - \sqrt{x}$  for  $x$

$$u = 4 - \sqrt{x}$$

$$u - 4 = -\sqrt{x}$$

$$(u - 4)^2 = x$$

$$2(u - 4)du = dx$$

$$\int_0^9 \sqrt{4 - \sqrt{x}} dx = 2 \int_4^1 \sqrt{u}(u - 4)du = 2 \int_4^1 u^{\frac{3}{2}} - 4u^{\frac{1}{2}} du$$

etc.

3.

$$\int \frac{x^2 + 4}{x + 2} dx$$

here the substitution  $u = x + 2$  gets rid of the pesky denominator

$$u = x + 2$$

$$u - 2 = x$$

$$du = dx$$

$$(u - 2)^2 + 4 = x^2 + 4$$

$$\int \frac{(u - 2)^2 + 4}{u} du = \int \left( u - 4 + \frac{8}{u} \right) du = \frac{u^2}{2} - 4u + 8 \ln(u)$$

etc

HOWEVER although this is probably the wolfram solution it is a lot easier to divide, especially since synthetic division is very easy. It saved the algebra steps here:  

$$\frac{(u-2)^2 + 4}{u} = u - 4 + \frac{8}{u}$$
 AND you do not have to go back and replace  $u$  by  $x + 2$

$$\frac{x^2 + 4}{x + 2} = x - 2 + \frac{8}{x - 2}$$

and now the integral is very easy.

4.

$$\int \frac{5}{1 + 2x^2} dx$$

The important part here is to recall that the derivative of arctangent is  $\frac{1}{1 + x^2}$  which is not exactly what we have, so the substitution is  $u = \sqrt{2}x$

$$u = \sqrt{2}x$$

$$\frac{u}{\sqrt{2}} = x$$

$$\frac{du}{\sqrt{2}} = dx$$

$$\frac{5}{\sqrt{2}} \int \frac{du}{1 + u^2} = \frac{5}{\sqrt{2}} \tan^{-1}(u) = \frac{5}{\sqrt{2}} \tan^{-1}(\sqrt{2}x)$$