

Fill in the definitions (look them up if needed)

1. A sequence a_n has a limit L if

2. A sequence is **increasing** if

3. A sequence is **decreasing** if

4. A sequence is **monotonic** if

5. A sequence is **bounded above** if

6. A sequence is **bounded below** if

7. A sequence is **bounded** if

8. Write the first 4 terms of the sequence

$$a_n = \frac{n-1}{n+1}$$

9. Write the first 4 terms of the sequence given by the recursion

$$a_1 = 3, a_n = \frac{1}{4 - a_{n-1}}$$

and find $\lim_{x \rightarrow \infty} a_n$

10. Write the first 4 terms of the sequence given by the recursion

$$a_1 = 2, a_n = \frac{1}{2} \left(a_{n-1} + \frac{5}{a_{n-1}} \right) \text{ and find}$$

$\lim_{x \rightarrow \infty} a_n$

11. Definition: A series $\sum_{n=1}^{\infty} a_n$ converges to S if

12. Find the sum of the geometric series $\sum_{n=0}^{\infty} \frac{4^n}{5^{n+1}}$

13. Find the following sum: $\sum_{n=3}^{\infty} \frac{3}{(n-2)(n+1)}$

14. Use the comparison test to test

$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3 + 3}}$$

for convergence. State explicitly what you compared it to.

15. Determine whether the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^3}}$$

is conditionally convergent, absolutely convergent, or neither.

16. Use the ratio test to test $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ for convergence.

17. Find the radius of convergence and the interval of convergence for

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$$

18. Find the Maclaurin series for

$$f(x) = \frac{1}{(1-x)^2} \text{ and find the radius of convergence for that series.}$$

19. Write the Maclaurin series for e^x

20. Write the Maclaurin series for $\sin(x)$

21. Write the Maclaurin series for $\cos(x)$

22. Write the Maclaurin series for x^3e^{-x}