

Definitions

1. Definition: A sequence $\{a_n\}$ has the limit L i.e. $\lim_{n \rightarrow \infty} a_n = L$ if
2. A series $\sum_{n=1}^{\infty} a_n$ converges to S if
3. Find $\lim_{n \rightarrow \infty} \log(n+1) - \log(n)$
4. Write the first 5 terms of the sequence defined by $a_1 = 1, a_n = 1 + \frac{1}{a_{n-1}}$
5. Prove $\lim_{n \rightarrow \infty} \frac{\sin(n)}{n} = 0$
6. Compute $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$
7. Without using the eyeball test, explain why $\sum \frac{2}{n^2 - 1}$ converges whilst $\sum \frac{2}{n - 1}$ diverges.
8. Find $\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$
9. Under what conditions does $\sum (-1)^n a_n$ converge?
10. Is $\sum (-1)^n \frac{n}{n+1}$ absolutely convergent, conditionally convergent or neither.
Support your answer.
11. Repeat for $\sum \frac{(-1)^n}{n \log(n)}$
12. Find the radius of convergence and the interval of convergence for

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$$
13. Find the power series representation for

$$\frac{x}{1+x}$$
14. Find the power series representation for
 $\log(1-x)$

15. Write the Maclaurin series for $\sin(x)$, $\cos(x)$, e^x
16. Find the Maclaurin series for xe^{2x}
17. Find the Taylor series for $1 + x + x^2$ at $x = 2$
18. Evaluate the indefinite integral as an infinite series $\int \frac{\cos(x)}{x}$