172 Homework 11 Name:
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2. Sum the geometric series
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4. Use the alternating series test to check Z for conditional convergence, absolute
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convergence, or divergence.
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5. Use the limit comparison test to check Z _
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what you are comparing it to, and compute the appropriate limit.
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6. Do the same for Z _—
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7. Use the ratio test to check E — for convergence.
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Use the root (or ratio) test to check Z J2nt1 for convergence.
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9. Z —p converges if and only if
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Z ar™! converges if and only if
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The alternating series Z(—l)”an where a,, > 0 converges if
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Give examples of 3 alternating series: one that converges absolutely, one that converges
conditionally, and one that diverges.



