
A baby proof of the fundamental theorem of calculus for the specific case of∫ x

1

t2dt

Theorem says that if f is continuous on [a, b] and a < x < b then the derivative of

G(x) =

∫ x

1

t2dt

is f(x) i.e. G′(x) = f(x)
In this case we should be able to prove that the derivative of∫ x

1

t2dt

is f(x) = x2

First we need to remember what the definition of the derivative is:

G′(x) = lim
h→0

G(x+ h)−G(x)

h

Second we need to figure out how to apply that general definition in the specific case where

G(x) =

∫ x

1

t2dt

It is confusing but important to remember that the variable is x not t and G(x) is a function
of x so for example

G(5) =

∫ 5

1

t2dt,G(π) =

∫ π

1

t2dt,G(π +
√

2) =

∫ π+
√
2

1

t2dt

and so

G(x+ h) =

∫ x+h

1

t2dt



Here is a picture of

∫ 3

1

t2dt on the left

∫ 3.1

1

t2dt

Subtracting the first one from the second gives

∫ 3.1

3

t2dt

With these pictures in mind we can see that

G(x+ h)−G(x) =

∫ x+h

1

t2dt−
∫ x

1

t2dt =

∫ x+h

x

t2dt

On the interval [x, x + h] for h > 0 the largest this integral can be is h(x + h)2 and the
smallest it can be is hx2 since the length of the path is h and t2 is increasing. so

hx2 ≤
∫ x+h

x

t2dt ≤ h(x+ h2)



Dividing by h we get
G(x+ h)−G(x)

h
=

1

h

∫ x+h

x

t2dt

and so

x2 ≤ G(x+ h)−G(x)

h
≤ (x+ h)2

Taking the limit as h → 0 the left hand limit is x2 as there is no h in it, the limit on the
right is x2 as well, (replace h by 0), and the middle is the definition of G′(x) i.e.

x2 ≤ G′(x) ≤ x2

making
G′(x) = x2

The general proof is very similar, replacing t2 by f(t) and justifying maximum and minimum
value of the integral by the extreme value theorem, and justifying the last limit on the left
equal to the limit on the right by the continuity of f



The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus shows that differentiation and Integration are inverse processes.

Consider the function f(t) = t. For any value of x > 0, I can calculate the definite integral∫ x

0

f(t)dt =

∫ x

0

tdt.

by finding the area under the curve:
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f(t) = t

f x( ) = x

This gives us a formula for
∫ x

0
f(t)dt in terms of x, in fact we see that it is a function of x:

F (x) =

∫ x

0

tdt =

What is F ′(x)?

This is an example of a general phenomenon for continuous functions:

The Fundamental Theorem of Calculus, Part 1 : If f is a continuous function
on [a, b], then the function g defined by

g(x) =

∫ x

a

f(t)dt, a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x) or

d

dx

∫ x

a

f(t)dt = f(x).

Note This tells us that g(x) is an antiderivative for f(x).

Proof We know that

g′(x) = lim
h→0

g(x + h)− g(x)

h

First we will focus on putting the quotient on the right hand side into a form for which we can calculate
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the limit. Using the definition of the function g(x), we get

g(x + h)− g(x)

h
=

∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt

h
=

∫ x

a
f(t)dt +

∫ x+h

x
f(t)dt−

∫ x

a
f(t)dt

h
=

1

h

∫ x+h

x

f(t)dt
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If f(x) > 0 the integral
∫ x+h

x
f(t)dt is that area between the curve y = f(t) and the t-axis, over the

interval from t = x and t = x + h. Since f is continuous on the interval [x, x + h], we can use the
Extreme Value Theorem to show that f achieves a maximum, M, and a minimum, m, on that interval.
That is, for all values of t in the interval [x, x + h],

m ≤ f(t) ≤M

and by the laws of definite integrals, we have

m(x + h− x) ≤
∫ x+h

x

f(t)dt ≤M(x + h− x) or mh ≤
∫ x+h

x

f(t)dt ≤Mh.

Dividing across by h, we get

m ≤ 1

h

∫ x+h

x

f(t)dt ≤M.

The minimum and maximum are not necessarily at the endpoints of the interval as shown in the
picture above, they may be some where in the interior. However the Extreme Value Theorem (which
applies because the function is continuous) guarantees that there is a number c1 in the interval with
f(c1) = m ≤ f(t) for all t ∈ [x, x + h] and there is a number c2 ∈ [x, x + h] for which f(c2) = M ≥ f(t)
for all t ∈ [x, x + h]. So this gives us

f(c1) ≤
1

h

∫ x+h

x

f(t)dt ≤ f(c2)

where c1, c2 ∈ [x, x + h].
Now taking limits, we get

lim
h→0

f(c1) ≤ lim
h→0

1

h

∫ x+h

x

f(t)dt ≤ lim
h→0

f(c2)

2



As h→ 0, c1 → x and c2 → x, because the width of the interval is going to 0. Because f(t) is continuous

lim
h→0

f(c1) = f(x) = lim
h→0

f(c2)

and

f(x) ≤ lim
h→0

1

h

∫ x+h

x

f(t)dt ≤ f(x) and lim
h→0

1

h

∫ x+h

x

f(t)dt = f(x)

This proves that

g′(x) = lim
h→0

g(x + h)− g(x)

h
= lim

h→0

1

h

∫ x+h

x

f(t)dt = f(x).

Example Find the derivative of the functions listed below:

g(x) =

∫ x

1

√
9 + t2dt, h(x) =

∫ x

5

1√
1 + cos2 t

dt

Note A careful look at the proof of the above theorem shows that it also applies to the situation where
a ≤ x ≤ b:

If f is a continuous function on [a, b], then the function g defined by

g(x) =

∫ x

b

f(t)dt, a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x) or

d

dx

∫ x

b

f(t)dt = f(x).

This implies that

d

dx

∫ b

x

f(t)dt =
d

dx

(
−
∫ x

b

f(t)dt

)
= −f(x).

Example Find the derivative of the function:

F (x) =

∫ 1

x

1

3 + cos u
du
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We can also use the chain rule with the Fundamental Theorem of Calculus:
Example Find the derivative of the following function:

G(x) =

∫ x2

1

1

3 + cos t
dt

The Fundamental Theorem of Calculus, Part II If f is continuous on [a, b], then∫ b

a

f(x)dx = F (b)− F (a) ( notationF (b)− F (a) = F (x)
∣∣b
a

)

where F is any antiderivative of f , that is, a function such that F ′ = f .

Proof Let g(x) =
∫ x

a
f(t)dt, then from part 1, we know that g(x) is an antiderivative of f . Hence if

F (x) is another antiderivative for f , we have

F (x) = g(x) + C

for some constant C and a < x < b. Since F and g are continuous, we see by taking limits that
F (a) = g(a) + C and F (b) = g(b) + C.

Now

g(a) =

∫ a

a

f(t)dt = 0 and g(b) =

∫ b

a

f(t)dt

Therefore

F (b)− F (a) = (g(b) + C)− (g(a) + C) = g(b)− g(a) =

∫ b

a

f(t)dt.

This makes the calculation of integrals much easier for any function for which we can find an antideriva-
tive.

Example Evaluate the following integrals:∫ 1

−1

x2dx,

∫ 3

1

1

x2
dx

∫ π
2

0

cos xdx

∫ π
4

0

√
x + 2 sec2 xdx

Example Why is the above method not applicable to∫ 1

−1

1

t2
dt?

4



10/28/10 12:18 PMHistory of the Fundamental Theorem of Calculus

Page 1 of 4http://www.saintjoe.edu/~karend/m441/Cauchy.html

Cauchy and The Rigorous Development of
Calculus

The Approaches of Newton and Leibniz to Calculus

Augustin-Louis Cauchy (1789--1857)

Rigorous Calculus Begins with Limits

The Approaches of Newton and Leibniz to Calculus

From foundations provided by earlier mathematicians such as Barrow during the first part of the
17th century, Sir Isaac Newton (1642--1727) mastered concepts of tangent  and  quadrature
(definite integration). 
His interpretations were based on physical models of time, motion, and velocity.

In a letter to Gottfried Wilhelm Leibniz (1646--1716), Newton stated the two most basic problems of
calculus 
were

   "1. Given the length of the space continuously [i.e., at every instant of time], to find the 
    speed of motion [i.e., the derivative] at any time proposed. 
   2. Given the speed of motion continuously, to  find the length of the space [i.e., the integral or the
antiderivative] described at any time proposed."

This indicates his understanding (but not proof) of the Fundamental Theorem of Calculus.

Instead of using derivatives, Newton referred to fluxions of variables, denoted by x, and instead of
antiderivatives, he used what he called fluents.   Newton considered lines as generated by points
in motion, planes as generated by lines in motion and bodies as generated by planes in motion,
and he called these fluents.  He used the term fluxions to refer to the velocity of these fluents.

Newton began thinking of the traditional geometric problems of calculus in algebraic terms. 
Newton’s three calculus monographs were circulated to his colleagues of the Royal Society, but
they were not published until much later, after his death.

 Leibniz’s ideas about integrals, derivatives, and calculus in general were derived from close
analogies with 
finite sums and differences.   Leibniz also formulated an early statement of the  Fundamental
Theorem of 
Calculus, and then later  in a 1693 paper Leibniz stated, "the general  problem of quadratures can
be reduced to the finding of a curve that has a given law of tangency. 
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A ugly dispute between Leibniz and Newton, fueled by their followers ensued over credit for the
development of these ideas. Most English mathematicians continued to Newton’s fluxions and
fluents, avoiding avoided Leibniz’s superior notations until the early 1800's.

Both Newton and Leibniz developed calculus  with an intuitive approach.   Formal proofs came with
later mathematicians, primarily Cauchy.

 

Augustin-Louis Cauchy (1789--1857)

 (From the The MacTutor History of  Mathematics Archive)

The rigorous development of the calculus is credited to Augustin Louis Cauchy (1789--1857).  The
modern proof of the Fundamental Theorem of Calculus  was written in his Lessons Given at the
École Royale Polytechnique on the Infinitesimal Calculus  in 1823.   Cauchy's proof  finally  
rigorously and elegantly united the two major branches of calculus (differential and integral)  into
one structure.

Cauchy was born in Paris the year the  French revolution began.  Laplace was his neighbor,   and
Lagrange was an a friend and supporter.  He was   admitted to the École polytechnique in 1805 to
study engineering at the age of 16. Cauchy had already read Laplace’s  Mécanique céleste and
Lagrange’s  Traité des functions analytiques.

 In 1816 he won a contest of     the French Academy on the propagation of waves on the surface of
a liquid. 
 In the same year when Monge and Carnot were expelled from the Académie des sciences,
Cauchy was appointed as a replacement member.  Eventually, Cauchy was appointed  a full
professor at the École polytechnique.  His classic works Cours d’analyse     (Course on Analysis,
1821) and Résumé des leçons ... sur le calcul infinitésimal (1823)  contain his contributions to the
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1821) and Résumé des leçons ... sur le calcul infinitésimal (1823)  contain his contributions to the
rigorous development calculus.   From 1831 to 1833, while in excile from France due to political
unrest, he taught at the  University of Turin in Switzerland, and   subsequently accepted a 
professorship of celestial mechanics at Sorbonne.  Cauchy was a highly prolific writer, publishing a
total of 789 works.

Rigorous Calculus Begins with Limits

The major ideas of calculus – derivative, continuity, integral,  convergence/divergence of
sequences and series– are defined in terms of limits.

Limit is therefore the most fundamental concept of calculus .   This concept of limit distinguishes
calculus from other branches of mathematics such as algebra, geometry, number theory, and logic.

The  currently used definition  of limit is less than 150 years old. Before this time, the notions of
limit were vague and confusing intuitions  --  only infrequently used correctly.  In fact, in much of his
work on calculus, Isaac Newton failed to  acknowledge the fundamental role of the limit.

In the beginning of Book I of the Principia Mathematica, Newton provides a formulation of the
definition of limit :

  "Quantities, and the ratios of quantities, which in any finite time converge continually to equality,
and 
   before the end of that time approach nearer to each other than by any given difference, become 
   ultimately equal."

Concern about the lack of rigorous foundations for calculus grew during the late years of the 18th
century 
At the beginning of the 18th century, the ideas about limits were certainly confusing.

In 1821, Cauchy was searching for a rigorous development of calculus to present to his
engineering students at the École polytechnique in Paris.  He started calculus course from scratch;
beginning with a modern definition of the limit.   His class notes were essentially  textbooks, the first
one called Cours d’analyse (Course of Analysis). In his writings,  Cauchy used  limits as the basis
for rigorous definitions of continuity and convergence, the derivative and the  integral.   He gave as
his definition of limit: 
               " When the values successively attributed to a particular  variable approach indefinitely 
                 a fixed value so as to  differ from it by as little as one wishes, this latter  value 
                 is called the limit of the others. "

Karl  Weierstrass (1815--1897),  a professor of mathematics at the University of Berlin,   restated 
Cauchy’s original definition of the limit in strict arithmetical terms, using only absolute values and  
inequalities, giving us the epsilon-delta definition we use today.

Cauchy's definition of  the derivative was given as:

              "The limit of [f(x + i) – f(x)] / i as i approaches 0. The form of the function which serves 
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              as the limit of the ratio [f(x + i) – f(x)] / i will depend on the form of the proposed 
              function y = f(x). In order to indicate this dependence, one gives the new function the 
              name of derived function. "

Cauchy went on to find derivatives of all the elementary functions and to give the chain rule. 
He also applied the Mean Value Theorem for derivatives in the proof of a number of basic calculus
results such as the first derivative criteria for increasing and decreasing functions.

Cauchy defined the integral of any continuous function on the interval [a,b] to be the limit of the
sums of areas of thin rectangles.  He attempted to prove that this limit existed for all functions
continuous on the given interval. His attempted proof used  the Intermediate Value Theorem, but
contained some logical gaps.

Cauchy proved the Mean Value Theorem for Integrals and used it to prove the Fundamental
Theorem of Calculus for continuous functions, giving the form of the proof used today's calculus
texts.

Cauchy  the first to define fully the   ideas of convergence and absolute convergence of infinite
series, including the development of the ratio and root tests for convergence of series.

He was also the first to develop a systematic theory for complex numbers and to develop the
Fourier transform for differential equations. 
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